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For calculation of one-dimensional flow of a conducting medium at small mag- 
netic Reynolds numbers it Is essential to know the shape of the channel and 
the distribution of electric and magnetic field intensities. At the present 
time a large number of references are available which are devoted to the 
examination of various specific examples. However in the investigation of 
flow In the channel of a magnetohydrodynamic generator, those problems are 
of greater Interest In which the shape of the channel and the electromagnetic 
field are selected so as to assure extremes of certain characteristics, for 
example, maximum available power, minimum losses, etc. The present paper Is 
devoted to solution of these problems with utilization of the method of vari- 
ational computation. Solutions are Illustrated by examples. 

Attempts available In the literature to solve the problem under examina- 
tion either have not led to constructive results cl and 21 or have a limited 
value because only some narrow classes of flows, for Instance lsothermal[3], 
were examined. 

1. Stationary flow of an inviscid and thermally nonconducting medium 

with electrical conductivity @ Is examined in a flat channel (Flg.1) In 

the presence of an external magnetic field 

B" = (0, 0, - B"). The upper and the lower 

walls of the channel have at z.? > 0 the 

potentials cpO and - $, respectively. For 

X0< Othe walls of the channel represent 

Insulators and B.' E 0. The gas flows from a 

receiver where It has the density p,O , the 
enthalpy h,O and the electrical conductivity 
0 

cr * It Is considered that for Xo~ 0 the 

flow proceeds without losses. 

Assuming that the flow is one-dimensional and that magnetic Reynolds num- 

bers are small, the usual form of Ohm's law Is applicable and, neglecting 

the current which flows parallel to the axis of the channel, we find that 

the flow is described by equations of motion, energy and continuity cl and 43 
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L, F puu’ + p’ + AaB (uB - $) = 0 A= 
B,"%,O1" 

PI0 ?Qq > 

(1.1) 

+ Aacp (uB - +) = 0, L, E (ypu)’ = 0 

Here 2y is the height of the channel, u Is the velocity, P Is the 

pressure, A Is a nondimensional parameter, primes denote derivatives with 

respect to r , quantities with the superscript 0 are dimensional, and 

without this supescript are nondimensional. Dimensional and nondimensional 

variables are connected through the following relationships: 

Here la and B,@ are constants with dimensions of length and magnetic 

field intensity, subscripts 

lng points (an exception are 

equation It was assumed that 

index w . 

a, b,... are added to parameters at correspond- 

subscripts m and a ). In writing the energy 

the medium is a perfect gas with an adiabatlc- 

It may be seen from (1.1) that for determination of flow It Is necessary 

to prescribe the controlling parameters: length of channel xb , Its shape 

y(x) , magnetic field R(r), potential cp(x) and pressure p, of external 

medium Into which the exhaust takes place. To each set of these quantities 

corresponds a value of the available power per unit of width of the generator 

N= N” 
2P; W3%," 

=A~ci+ZL-$)dz 
0 

(1.1) 

Let us examine the problem of determination of y (z),B(x),CP(Z) xb and 

po3, which yield a maximum value for functional N . 

Variable functions must satisfy conditions connected with formulation of 

the problem and with limits of applicability of Equations (1.1). 

The initial cross section of the channel Is fixed as 

Maximum allowable 

10 . Then 

Yll =y(O)=i, xa=o (1.3) 
dimensions are also given: height 2Yy.O and length 

Y (5) f y7 o<x\(xb<i (i-4) 
Posslbllltles of arrangements producing the magnetic field, limit the 

maximum allowable Intensity. Taking the modulus of this quantity to be B.*, 

we obtain 
-ifB(x)<i (i-5) 

In an analogous manner 

-(Pm <<cp (4 <%I (4.6, 
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Finally, by virtue of the assumption of absence of losses, P. and P, 
are at Z\< 0 connected with u, through the following relationships 

pa = (1 - u,2)1/ 04, Pa = q (1 - &2)X/ (X-1) (1.7) 

Among conditions connected with limits of applicability of Equations (1.1) 

we will examine only one 
I Y’ (“)I 6 k < 00 (f-8) 

where k Is a given constant. This condition reflects the circumstance 

that for one-dimensional equations to be applicable, the angle between the 

wall and the axis of the channel must not be too great. 

Statements made above allow to determine the class of admissible functions. 

Functions B(X) and T(X) may have discontlnultles of the first kind. Func- 

tion Y(X) Is continuous In view of (1.8). Assuming the absence of shock 

waves we obtain from (1.1) that U(X) , p(x) and p(x) we also continuous 

although their derivatives are discontinuous at points of discontinuity u', 

B and v 

The need may arise for additlcnal limiting conditions of the type (1.8). 
For example, In order to assure continuity of u, p and p In supersonic 
flow It Is necessary to require the absence of points of contour discontinu- 
ity, I.e. It Is necessary to place a restriction on Yl(x) . Conditions for 
smallness of magnetic Reynolds number, etc. can be formulated In an analogous 
manner. Without doing this we note that the presence of regions In the solu- 
tion which are determined by such Inequalities Indicates the necessity of 
application of equations which are valid over a wider range. 

Let us formulate the variational problem. It Is required to find among 

permissible functions 

Y = Y (4, 24 = u (4, P = P (4, P = 

which satisfy conditions (1.3) to (1.8) and 

those, which yield a maximum for functional 

Before proceeding tc the solut!sn of the . _ _.. 

P (4 B = B (4, ‘p = cp (4 
differential relationships (1.1). 

(1.2). 

variational problem we note that 
In calculations It Is more ccnvenlent to use Instead of system (1.1) the 
equivalent system 

u’ = - XPU 
y (xp - pu2) y’ - 

(x - 1) CF - XYUB 
Y (XP - PU’) 

XPPU2 
p’ = y (xp - pu2) Y’ + 

‘(X - 1) PU (a - YW - XYPB A.a LLB _ v 

Y (v - PlL2) ( -!i7 1 (1.9) 

C 

P=yU (c = Pa% = YbPr&) 

2. Let electric conductuvity be constant (U z 1). For solution of the 

problem we put the auxiliary functional 

J = i[A+ - f) + ~1 (4-h + ~2 (4:)2 + p3 (s)L,ldz 

i 

where I.I~, up and pJ are varlable Lagrange multipliers. It Is apparent that 

for permissible variation, variations of the functlonals I and N coincide 

by virtue of satisfying Equations (1.1). 
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Let us find the first variation I . 

Since admissible functions or their derivatives can suffer dlscontlnultles, 
we divide the Interval of Integration Into regions of continuity v', B and 
cp . To obtain all necessary relationships It Is sufficient to examine one 
point of discontinuity d . Parameters to the left (right) of 8 we will 
designate by the Index minus (plus). In variation the position of d may 
change. It may be shown that If 
then for any variable z we have 

6~,,'~t~~~_c~~~n~~b~~'.ss,au~6~~~~t~ 

advantage of liberty In determination sf Lagrange'; mul+tdlpl*iers, we write 

hd+ = kd-* hd+ = hd-r P&f+ = IL&i- (2.V 

Taking Into account the aforementioned and also that 6X, = &/a = 0 by 
virtue of (1.3), and that 6u,, 6p, and 6p, are connected through relatlon- 

ships (1.7), we obtain 

6N = 6I= y (W&J + W,6B + W&JJ + W&u + W& + W&) ds + 

U = A (P$ + ~2cp -cp) (+ - uB), V = Acp (uB - +) 

Here W, are known functions of Y, u, p, p, B and of Lagrange's multl- 

pliers. Variations entering Into (2.2) are not independent. Lagrange's 

multipliers are selected such that In the expression for 61 only variations 

of controlling parameters remain, 1.e. Of y, B, 9, xd, xb, &, and pa. We 

will show that this can be done for any flow. Values of u,, ua and I.I~ are 

determined such that In regions of continuity I/', B and cp the following 

holds: 
w, = w, = w, = 0 

From this, taking Into account expressions for W, and simple transforma- 

tions and with utilization of (1.9) we btaln 

pi' = Mi (Y, u, P, P, B, cp, ~1, ~a, if) (t = 2,‘2, 3) (2.3) 

For Integration of system (2.3), In addltlon to conditions (2.1) at points 

of discontinuity It Is Indispensable to have three more conditions. Their 

form depends on the flow behavior. 
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For subsonic exhaust P,= Pm and &Pb = bP, * If the exit velocity is 

equal to sonic velocity (wpb= pbub2) then 

6pb = $ @b + (2.4) 

Finally, for completely supersonic flow U. is the controlling parameter 

since It can vary due to change In the shape of the channel at x < 0 . 
Small variations In remaining controlling parameters have no influence upon 

n. In this case. It Is noted that in subsonic flow u, does not depend on 

the shape of the channel at x < 0 , and is completely defined by the flow 
at x>O. 

In accordance with this we obtain in the first two cases by equating to 

zero the coefficient in front of bu. 

2P 3a = - P2a 
(2.5) 

In addition to this, in subsonic exhaust, we equate to zero coefficients 

in front of bu, and bp, . As a result we obtain 

Uba 
kb = - ;!p2b (2.6) 

At sonic conditions by eliminating 6p,, by means of (2.4) we find in the 

same manner the relationships 

plb = - 2 &b, 
uba 

p3b = - 2 hb (2.7) 

For supersonic flow we obtain the following by equating to zero coeffici- 

ents in front of bu,, bc, and bpb : 

kb = p2b = p2b = 0 (2.8) 

Thus, Lagrange's multipliers c n always be selected such that in the ex- 
pression for 61 only variations. of Independently variable quantities remain. 
For this it is sufficient to f: Zqll conditions obtained above. For an 

't 
iven ~~,~(z),B(z),cp(s) and p, the flow Is determined by Equations (1.1 T or 
1.9) and by the following conditions; by P,= P, for subsonic exhaust, by 

%$, = pi,ub2 (2.9) 

for sonic exhaust (the latter is only possible for Pa dpb), by given ~1. 
in supersonic flow and by (1.7) in all cases. 
determined from (2.3) for conditions: (2.5) 

u and CI, are 
andFt?~;Yyoru\;.5~ and (2.7), 

or (2.8) for subsonic, sonic and su ersonic condition; respectively. We 
note that conditions of continuity P 2.1) may remain un&ed if (2.3)is aPPl.kd 
over the entire interval of integration. Here continuity of u, is automa- 
tically satisfied. 

3. Corresonding to selection of Lagrange's multipliers 

#b 

6N = 61 = 1 ( W$Y + W@ + W,Gcp) dx + (U_ c u,), 6xd + 
0 

+ V&Jb +[pa&+ + f) + p3f'u], 6Yb + (PI + ~2,&yU)b8p, - 

(3.1) 
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The component with dp, exists in (3.1) only in subsonic flow, and the 

component with bu. only in supersonic flow. 

Variations entering Into (3.1) are Independent. This permits to obtain 
conditions of the extremum with respect to all controlling parameters and 
also with respect to each one of them Individually. In addition, examining 
the variation of some quantity at an arbitrary point (for example y ), the 
remaining variations may be considered to be absent. 

First of all we will find the optimum Pm for subsonic flow. For this we 

equate to zero the coefficient In front of bp . Remembering (2.6) we find 

that this leads to condition (2.9), i.e. amongmsubsonlc conditions the optl- 

mum Is the behavior of sonic exhaust. 

Analogously, in the supersonic case the extremum is realized when one of 

the following conditions is fulfilled. 

(3.2) 

In the first case U. is equal to sonic velocity, in the second case It Is 

equal to maximum velocity. It Is recalled that due to formulation of the 

problem these conditions correspond to the extremum at fixed I/.. It may be 

shown that the first value u. realizes an extremum even when the gas con- 

sumption and not b/s Is fixed. The character of the extremum Is determined 

by comparison of the quantity N for all roots of (3.2). 

In order to find the optimum length of the channel It Is necessary to 

equate to zero the factor in front of 6x,. However, If xb= 1 , then the 

allowable 6x,< 0 and to Insure a maximum of N It Is sufficient for this 

factor not to be negative. Thus, 

V, s A+B - +a 0 @*dQ (3.3) 

where the sign of Inequality can apply only for xb= 1 . From this follows 

the natural conclusion: the length of the channel must be chosen such that 

In the end section the generator mode Is achieved. 

In the same manner we find the necessary condition of maximum with respect 

to I/b 

[ ( PZU 5 P + $) + lwqb > 0 

Here the inequality can apply only for y,= Y . For supersonic flow this 

condltlon is always satisfied by virtue of (2.8), for subsonic or sonic con- 

ditions it takes the following form because of (2.6) or (2.7) 

f&b > 0 (3.4) 
For y,< Y this condition determines the optimum y, . 

Finally, equating to zero the coefficient In front of bxbJ we obtain the 

necessary condition for extremum at points of discontinuity 

(U_- U$li = 0 (3.5) 
We emphasize thatatpoints of discontinuity of contour no additional con- 

ditions arose, 
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Examination of terms outside the Integral In (3.1) gave the conditions 
for determination of optimal p_, u., x and x,, at arbitrary y(x), B(X) 
and V(X) . An exception Is presented by condition (3.4). In fact, varia- 
tion vs Is not Independent, since by virtue of (1.8) It necessitates a 
change of I/ for .r c xI . For small changes of y,, the contributlk due 
to this Is of a higher degree of smallness since 
a section of x 

can be varied only over 
of the same order as 

to consider 
Thls'very circumstance permits 

by, as Independent In obta%& (3.4). Therefore the case of 
arbitrary shape of channel the condition (3.4) serves only as a check and 
not for finding of optimum va 

For the construction of experimental P(X), B(X) and T'(~) , Juet as In 

obtaining (3.3) and (3.4), we will remember that the desired curves may con- 

sist of regions of two-sided and outer extremums. Since In the first men- 

tioned regions the variations are arbitrary, W,, W, or W, must go to zero 

here. 

As a result we obtain Equations 

(3.6) 

W,F A 
Y (Pus - V) {IL@ (x - 1) (+;)(&UB-;)+ 

+ W + P2cp + cp)[v p-g+ w2;]} =o 

J4’2 = A [u (~8 + ~2cp + cp) + ~11 (“B - ;)I = 0 

f+‘, A[(1 +~2)(+;)- (I11B+pz’~+qW’]--O (3.8) 

(3.7) 

for determination of the shape of channel,lntensitles of magnetic field and 

potential, respectively. III obtaining the expression for W, the derivatives 

u', p', p,'t i.ia' and cl=' are eliminated by means of (1.9) and (2.3). Ab- 

sence of derivative y' ln W, Indicatesdouble degeneracy of the problem. Let us 

mention that the same circumstance follows from the result of [2]. Each of 

these equations Is applied only where y, B and cp , which are to be deter- 

mined from these equations, satisfy conditions (1.4) to (1.6) and (1.8). In 

the opposite case an outer extremum is present. Here the corresondlng func- 

tion Is equal to the llmltlng value resulting from (1.4), (1.5), (1.6) or 

(1.8). Since In these regions permissible variations do not change sign, 

necessary conditions of maximum N are formulated here as Inequalities 

w,> 0 for y=Y (3.9) 

W, sign B >O for B =f 1 (3.10) 

W,signcp >O for q2=fqm (3.11) 

In order to obtain an analogous condition In the region ef with Equa- 

tion g'= k , we vary I/' only for xs < xl< 5 < ;2, \( xf, and let 

max IQ'1 and IX.- rz 1 be quantities of the same order. With accuracy to 

terms of higher order 

6N = ,,$&j w,alx 

XI "1 

For permissible by' we obtain by virtue of (1.8) 
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x7-h 

s Gy'dx < 0 for y’ = k 
“I 

Therefore the necessary condition of maximum N has the form 

For the same reason 
x 

s W,dx > 0 (y’ = - k, z(J d 5 \< q:1) 

To satisfy these inequalities it Is sufficient (but not necessary) to 

satisfy (3.9). 

Sometimes the class of permissible functions can be narrowed. So, If the 

walls are Ideal conductors, then cp(x) = const . Here bcp also does not 

depend on x and the experimental cp satisfies the condition 

0 

where the inequality is only applicable at 1~1 I q. . 

An analysis of conditions obtained shows the following. For optimum B 
and cp the only possible discontinuity is their simultaneous change of signs 
for unchanged absolute value. This solution, however can be rejected because 
It yields the same value of N as the continuous solution. If cp Is given 
and continuous then optimum B Is also ?ontlnuous. 

In a number of cases rna'f be given as discontinuous. Moreover, 
on both sides of the disc&tir.ulty or B(x) Is discontinuous because of 
If cp(x) is sought ln the class of sectionally contlnous functions wlth'pre- 
scribed points of discontinuity (sectional electrodes), then cp Is deter- 
mined In all regions from conditions (3.12) by Integration only over regions 
of constant cp . Optimum dimensions of these regions are found from (3.5). 
Yere at points of discontinuity of cp 
continuous or IBI 

the optimum B(r) Is also either dls- 
- 1 on both sides of the discontinuity. This also applies 

to the case where B and cp Interchange places. 

In the general case the extremal contour may consist of regions of four 
types: y' = Y, y’ = k, y’= -k and a region of two-sided extremum (3.6). 
Extremal magnetic field may contain regions of three types: B = 1, B = - 1 
and a region of two-sided extremum (3.7). The same thing can be said about 
the extremum distribution of the potential. 

As follows from (3.7) and (2.8), In supersonic flow the end section of 
the curve B(x) Is always a region of an outer extremum. Functions y, B 
and cp are continuous at all points of contact. 

In sections of the channel which are simultaneously regions of two-sided 
extremw with respect to I/ and with respect to B , according to (3.6) and 
L;,3.!,ln; pf$wi.e. M = x-‘“. Consequently such a case Is Impossible for 

In addition to this It Is not necessary to determlne ps 
ln supersonic flow because In this case It has no Influence on the solution. 

It Is clear that the conditions found also give solutions of more specific 
problems, for example, the problem of determination of external B cc) 

t 
lven shape of channel and lven potential. Here from conditions 3.6) to t 

for 

3.12) only (3.7) and (3.10 are utilized. 
In each actual case all possible flow conditions should be examined (sub- 

sonic, sonic, supersonic) and ln the presence of several maxima the selection 
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should be made according to quantity 7~ . We note that the case of mixed 
flow which Is not examined In this paper undoubtedly is of Interest and 
requires additional Investigation. 

4. As the first example let us 
P(x) 

c>xaminc the problem of dete~mlnlng the 
following optimum values: m = const P, and x for various values 
of parameter b In the case of A channel of'constant chess section. For 
;i<,,z ot$e shape of the channel Is such that M,B'I. There are no llmita- 

P * 
Thus, It Is necessary to solve the boundary value problem for five dif- 

ferentla .l equations (1.9) and (2.3) of the first order where 0 EYE 1 and 
Y' E 0, for six boundary conditions: (1.7) and (2.5) for x = 0 and (2.7) 
and (2.9) for x = x Additional freedom is given by selection of 
C In the last equatio; of system (1.9). 

pb or 
The quantity xb is determined 

from (3.3), while R(X) In accordance with (3.7), is determixed by equation 

B = $1 - (1 + PA u 
2UYl 

lf IT [PI- (1 fka) ulI < 12Uk1r and it is equal to +1 or to - 1 in the 
opposite case. The optimum m Is determined by condition (3.12) 

Xb 

s W,dx=O 
0 

or by an equivalent differential equation x'= P!, for boundary conditions 
y,= xb= 0 . One of these conditions Is satisfied at the expense of the 
choice In (D . 

I I I I 

logA -1 0 

Fig. 2 Fig. 3 

Fig. 4 Fig. 5 
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Equations were Integrated by the Kutta-Runge method from x = xb to x -0. 
Lacking Initial conditions for x I rb were selected by means of approxlma- 
tions with respect to four parameters using Newto& method. Since onapproacti 
lng xb all derivatives tend to Infinity, x was taken as Independent varl- 
able only for u'< 1 . For u'>, 1 ,U was taken as independent variable. 

Calculations were carried out on an electronic computer for n = 5/3 and 
0.01 < A < 100. Results are presented In Figs. 2 to 7 by solid lines. In 
Fig.2 optiinum B(x) Is shown for a number of values 
the optimum JC~ = 1). 

A (for all examined A 
Curves R(X) for A > 0.1382 consist of a region with 

BS 1: and a region with two-sided extremum. For smaller A the second 
region Is absent. With Increasing A the extent of the region with two- 
sided extremum grows, however, for any finite A , R = 1 near the left end. 
In Fig.3 the curve for optimum 
its dependence on A 

cp 
Is given. 

Is given, and In Fig.4 the curve p,, in 
The optimum (sonic) condition Is achieved 

for poo<Ppb- With Increase In A the actutted pressure drop * pbW1increaseS 
and decreases, though slower than 
tlal Yncreases. 

Therefore the dimensional poten- 
aIn Fig.5 the change 

shown for a number of values 
ln%&*fi number along the channel Is 

A (circles are points of connection between 
regions of outer and two-seded extremum). 

Fig.6 gives available power as a function of 
sponding curves for a generator with B(X)= i 

A . In Figs.3 to 7 corre- 
are given by dashed lines, 

the remaining parameters cp , p and rb were optimal. For A<O.1382 (cir- 
cles In Figs. 3, 4 and 6) chara%erlstlcs of both nenerators coincide. For 

large A opElmum profiling of -R(x) 
leads to an increase in available power 
& 3;8, 7.1, 22, 31 and 37 per cent 

= 1.0 1.5, 5.0, 10 and 20, 
respectively I and decrease In (D . In 
connection with this we note that In 
the presence of a limitation with 

Fig. 6 Fits. 7 

respect to cp the gain would have been even more slgnlflcant. In Figs. 3 
and 4 optimiun cp and p for A - 0 
on the left. 

are shown by horizontal line sections 
For determination of 'PA_,, Neurlnger's result cl and 43, 

was used, while u. and p_ were determined from equations of gas 
. In accordance with (1.2), NA=,=O. 

ditions of extremum with respect to vb and 
A check of necessary con- 

U(X) showed that ln cases which 
were Investigated, the channel of the examined formula Is not optimal, 
although vb- 1 Is optimal. 

It Is Interesting that for B E 1 the region of change of all parameters 
with increasing A becomes constricted towards x - 1 . This Is evident In 
the Mach number distribution and also In the distribution of available power 
(in Flg.7, n. Is the ratio of power which is available In a region of the 
channel to the left of a given JC to the total power). Such a result is 
natural because In this case In d&ivatlves In (1.9) a small parameter A" 
appears. At optimum B(x) the power output Is achieved almost uniformly, 
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which confirms qualitative considerations of paper [5]. 

As a second example the 
P 
roblem of determlna- 

tion of optimum y(n) , B(x , rp const and rb 
for Jo/y '= 10 and M,= 1 was solved for 9 num- 
ber of &ues A and Y In the supersonic flow 
condition. There Is no limitation with respect 
to 9, , and w = 5/3 . 

In the determination of optimum shape It is 
necessary to know the constant k or the maximum 
permissible angle+, between the wall and the 
axis of the channel for which one-dimensional 
theory Is still applicable. Since clarlflcatlon 
of this peoblem falls beyond the 1i.mlt.s OS this 
paper, $j,,,= zoo, was assumed, this gives 

0 0.1 k = (Ply ,‘tM@, = 3.64 

Fig. 8 and a maximum Y = 4.64. 
Analysis showed that In the range of n and 

Y under examination, the optimum 3c,= 1 , 
I)(s) - I 

the optimum magnetic Meld Is 
uniform: and the optimum contour of the channel consists of tw'o 
straight linear sections 1/‘= k and I/WY. For Y- 4.64 the power of 
the optimum generator as a function of A Is given In Fig.6 (dash-dot), and 
the optimum cp Is given in Flg.8. The maximum A for which the flow Is 

Fig. 9 Fig. 10 

still supersonic everywhere In this case Is equal to 0.103 (black circle In 
;;f.;)' The change In character of flow with increase in i\ is evident In 

. . It Is interesting that an Increase In A has almost no influence on 
the Initial region of flow. As follows from Flg.7, where the dash-dot line 
shows distribution of available power for A = 0.01 and 0.1 for Y = 4.64, 
this region of the generator operates as an accelerator. In Fig.10 the 
dependence of power on Y is given for the optimum generator by a solid 
curve. The dashed curve Is for a generator for which xb, B(x) and m are 
optimum while the walls are formed by straight linear sections which connect 
the points x.9 0, y.-•l and xb- I, I/~-* Y; both CaSeS A = 0.02. In the 
same figure the dependence cp - m(Y) Is presented. It Is evident that optl- 
mum selection of shape leads to a substantial increase In X . Calculation 
showed that M.= 1 used in this example Is not optimum. 

5. The analysis made can be applied to a more general case. Let 

0 - U(P, pt b ). In addltlon it Is not always appropriate to carry out optl- 

mlzatlon according to quantity of available power C6]. In connection with 

this let us examine the functlonals 
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Kj= i@j(x,Y, u, p~p,B,~,)dx u=l...., r- 1) 

0 
-1 

u,p,p,B,cp)dx ti=r,...,n) 
I 

0 0 

where ), and F, and also u are known functions of their arguments. 

The variational problem Is of Interest In which the maximum of the tth 

functional Is sought for lsoperlmetrlc condltlons which result when the 

remaining _ are given. Such Is for Instance the problem of construction 

of a magnetohydrodynamic generator of a specified power with minimum Joule 

dlsslpatlon. We construct the function 
n 

0 = (3 (5, Y, U, P, P, B, Cpt A) = 2 W’j (xv Y, up P, P, B, 9) - 
j=l 

-i AjKjFj (x9 Y, uv P, P, Bv ‘$1 
j=r 

where 1, are constant Lagrange's multipliers, here A,- 1 , If t < r and 

Ai = (5” Fidx)-I, if i>,r 

0 

An artalysls analogous to the one carried out above again leads to prevl- 

ously obtained relatlonshlpp If expressions for jf,, W,, U and II In them 

are replaced by the following: 

Ml= x 
pus - xp { 

y y’ + A (pIB + /q) p - pa,. (uB - ;) - 

-Qp P+ ( 
%$ pu2)(uB - ;,I+ u@, - pa$ - (p + X4 pun) ap\ 

M,= x--l 
YU (XP - PU") 

r+ Y’ + A hB + /wL(p) [wB - (%w2 + P%) x 

x (uB - ;)]+ u@, - 0D,pu2 - pap} 
MS = 2y $$ Xpj {‘$ (X& P + w2) Y’ - 2p.,A5 (uB - ;) x 

x( 
-&uB-;) + Au (ylB + JJ~‘P) [uaB - Map (uB - ;) - 

-- (~-3+~$‘) (uB-$1 + u@,-- Q,pu2 4$(x-3+3)} p=, 
X- 1 

Iv,= I 
Y (PUa - XP) I IQ@-- 

1)Aapu (uB-_$)(suB--F)+ 

+ A hB + iw) [WP - WPPU~ - %p2u2) (uB - ;) + 

+ PU2 y] + XP’ (a& + @‘pPU2 - qfy) - PUB (PQ, - YqJ} 
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Here %, au, %, @,, @B, %, % %I and CR designate partial derl- 

vatlves. The solution contains as before regions of two-sided and outer 

extremums. The conclusion about extremal Pm and u, Is also retained. 

Additional freedom In the selection of (n - 1) Lagrange's multipliers serves 

to satisfy an equal number of lsoperlmetrlc conditions. 
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