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For calculation of one-dimensional flow of a conducting medium at small mag-
netic Reynolds numbers 1t 1s essentlal to know the shape of the channel and
the distribution of electric and magnetic field intensitles. At the present
time a large number of references are avallable which are devoted to the
examination of various specific examples. However in the investigation of
flow in the channel of a magnetohydrodynamic generator, those problems are

of greater interest 1n which the shape of the channel and the electromagnetic
field are selected so as to assure extremes of certain characteristics, for
example, maximum avallable power, minimum losses, etc. The present paper 1s
devoted to solution of these problems with utilizatlon of the method of varl-
ational computation. Solutions are 1llustrated by examples,

Attempts avallable in the literature to solve the problem under exXamina-
tion either have not led to constructive results [1 and 2] or have a limited
value because only some narrow classes of flows, for instance isothermal[3],
were examlned.

1, Stationary flow of an inviscid and thermally nonconducting medium
with electrical conductivity ¢° 1s examined in a flat channel (Fig.l) in
the presence of an external magnetic fleld
B° = (0, 0, — B°). The upper and the lower
walls of the channel have at z° > 0 the
potentials ¢° and -~ ¢°, respectlvely. For
z° < 0 the walls of the channel represent
insulators and B° = (). The gas flows from a
recelver where it has the density op,° , the
enthalpy »,° and the electrical conductivity
5,° . It is considered that for »°< O the
Fig. 1 flow proceeds without losses.

Assuming that the flow is one-dimensional and that magnetic Reynolds num-
bers are small, the usual form of Ohm's law is applicable and, neglecting
the current which flows parallel to the axis of the channel, we find that
the flow 1is described by equations of motion, energy and continuity [1 and %)
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L, = puu’ + p’ 4 AcB (uB—%)z 0 (A=:i'."o%,7f—;)
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Here 2y 1s the height of the channel, vy 1s the veloclty, P 1is the
pressure, A 1s a nondimensional parameter, primes denote derivatives with
respect to x , quantities with the superscript © are dimensional, and
without this supescript are nondimensional. Dimenslonal and nondimensional
variables are connected through the following relationships:

z =2 R .
= l° ) y - yao 1) - V2_;l? 1] p'o
pO 60 BO ‘po
= §op o G = () B = (] = a1 o
p 2p,°h,"° s’ ' B’ ? Yo B’ V2h‘°

Here 1° and p,° are constants with dimensions of length and magnetic
fleld intensity, subscripts g, »,... are added to parameters at correspond-
ing points (an exception are subscripts m and s ). In writing the energy
equation 1t was assumed that the medlum is a perfect gas with an adiabatic.
index « .

It may be seen from (1.1) that for determination of flow 1t 18 necessary
to prescribe the controlling parameters: length of channel x, , 1its shape
y(x) , magnetic field BA(x), potential o(x) and pressure p_ of external
medium into which the exhaust takes place. To each set of these quantities
corresponds a value of the avallable power per unit of width of the generator

b
N° (]
=——-———=Agcq>(uB———)dx (1.2)
o 0.3 -
2p, (2k,)"y,° p y

Let us examine the problem of determination of y (z), B (z), ¢ () zp and

Pooy Which yleld a maximum value for functional ¥ .,

Variable functions must satisfy conditions connected with formulation of
the problem and with limits of applicability of Equations (1.1).

The initilal cross section of the channel is fixed as

Ya =y (0) =1, z, =0 (1.3)
Maximum allowable dimensions are also given: helght 2¥y,° and length
1%. Then y(2) <Y, I<z< o<1 (1.4)

Possibilities of arrangements producing the magnetic field, limit the
maximum allowable intensity. Taking the modulus of this quantity to be j5,9,

btail
ne o 1<B@<1 (1.5)

In an analogous manner

— P <O (2) < Pm (1.6
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Finally, by virtue of the assumption of absence of losses, p, and p,
are at & <; 0 connected with u, through the following relationships

x—1
Pa = (1 — ug)t/ -1, Pa = 5 (1 — ug?)x/x-1 (1.7)
Among conditions connected with limits of applicability of Equations (1.1)
we wlll examlne only one
Y [y (2))| < k< oo (1.8)

where % 1s a given constant. This condition reflects the circumstance
that for one-dimensional equations to be applicable, the angle between the
wall and the axis of the channel must not be too great,

Statements made above allow to determine the class of admissible functions.
Functions B(x) and o(x) may have discontinuitles of the first kind. Func-
tion y(x) 1s continuous in view of (1.8). Assuming the absence of shock
waves we obtain from (1.1) that wu(x) , p(x) and p(x) are also continuous
although thelr derivatives are discontinuous at points of discontinuity v/,
B and o

The need may arise for additicnal limilting conditions of the type (1.8).
For example, in order to assure continulty of y, p and p 1n supersonic
flow it 1s necessary to require the absence of points of contour discontinu~
ity, 1.e. 1t 1s necessary to place a restriction on y”{(x) . Conditlons for
smallness of magnetic Reynolds number, etc. can be formulated in an analogous
manner. Without doing this we note that the presence of regions in the solu-
tion which are determined by such inequalities indicates the necessity of
application of equations which are valld over a wilder range.

Let us formulate the varlational problem. It 1s required to filnd among
permlssible functions

y=y(@), u=u(2,p=0(2),p=p),B=D8(),9 =09 (2
which satisfy conditions (1.3) to (1.8) and differential relationships (1.1).
those, which yileld a maximum for functional (1.2).
Before proceeding tc the solutlon of the variational problem we note that

in calculations it 1s more ceonvenient tc use instead of system (1.1) the
equivalent system

, *pu ,  (k—1)¢ —=yuB ( ¢ )
STy Y T g —puy A0y
. xpput , o [(x —1) pu(g — yuB) — xypB ( g )
P=ytp—p¥ y (xp — pu?) Ao \uB — ) (19)
c
o= ﬂ_ (c= Pgltg = y-bpbub)

2. Let electric conductuvity be constant (0 = 1). For soclution of the
problem we put the auxiliary functional
B

= ([80(uB = 2) + 1 (@) Ly + 1y (2) Ly + 1y (2) L] do

where u,, u, and u, &are varilable Lagrange multipllers. It is apparent that
for permissible variation, variations of the functionals 7 and ¥ coincide
by virtue of satisfyling Equations (1.1).
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Let us find the first varilation 7T .

Since admissible functions or their derivatives can suffer discontinuities,
we divide the interval of integration into regions of continuity y’, B and
o . To obtain all necessary relationships 1t 1s sufficlent to examine one
point of discontinuity d . Parameters to the left (right) of 4 we will
deslgnate by the index minus (plus). 1In varlation the position of 7 may
change. It may be shown that 1f 6%‘ is the changp in, 3bscissa of polint 4,
then for any variable 2z we have Zq, = (5. — z,. zd Purther, taking
advantage of liberty 1n determination qf Lagrange s multipliers, we wrilte

Pray = Bpd—r Bogy = HBog .  Bggy = Wgg_ 2.1)
Taking into account the aforementioned and also that Gxa = ﬁya =0 by

virtue of (1.3), and that Ou,, 6p, and Op, are connected through relation-
ships (1.7), we obtain

Xp
SN =61 = S (Widy + W,0B + Wadp + Wdu + Wibp + Wedp) dz +

0

E;K
+ (U — U.)abza + Vidz, — (1 — ud)=1 (1— 240 ua?) (4 + ps) Suat

+ [p'zu( —1 P + + Mapu] 6yy 4+ [ulpu +p-2y( — + 2 pu’) +

-+ Hapy]b Sup + (ug 1%? + usyu)b 8ps + (pl + by ”1 i yu),, épp  (2.2)

U= A@WB+pme—o) (& —uB), V= Ap(uB — -2)
Here W, are known functions of y, u, p, p» B and of Lagrange's multi-
pliers, Varilations entering into (2.2) are not independent. Lagrange's
multipliers are selected such that in the expression for 6I only variations
of controlling parameters remain, i.e. of Yy, B, @, T4, Tp, Yp 8nd Po. We
wlll show that thls can be done for any flow. Values of y;, u; and u, are
determined such that in regions of continuity y’, B and ¢ the following

holds: W4 _ Wa — We = 0

From this, taking into account expressions for W, and simple transforma-
tions and with utilization of (1.9) we btain

P'i' = Mi (yv u, p, p, B’ P, Uy, Ros y') (i=1,'2, 3) (2,3)
’ {1 —
M, = puz,_‘.’fnp [lhf;u y'+ AB (B + 9 + (p)] , M,= uy'n uM,
i % —1 pau 2% 2
Ms = 5w —up) {T( 1p+pu)y +

+ A @B +p® + 9 uB—2, (uB — L) (FE7uB — 3]}

For integration of system (2.3), in addition to conditions (2.1) at points
of discontinuity it i1s indispensable to have three more conditions., Their
form depends on the flow behavior.
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For subsonic exhaust P,=P_and 5b6p,= 6p, . If the exit velocity is
equal to sonic velocity (xp,= P,u,?) then

up? 2p
8py = % dpp +

O% Su (2.4)

Finally, for completely supersonic flow 1y, is the controlling parameter
since 1t can vary due to change in the shape of the channel at x < 0O .
Small variations in remaining controlling parameters have no influence upon
U, 1in thls case. It 1s noted that in subsonic flow u, does not depend on
the shape of the channel at x < 0 , and 1s completely defined by the flow
at x> 0 .

In accordance with this we obtain in the first two cases by equating to
zero the coefficient in front of 6y,

Qga = — Po (2.5)

In addltion to thls, 1in subsonic exhaust, we equate to zero coefficients

in front of 6y, and ¢&p, . As a result we obtain
2

- LI ~ D 2.6

P !/b(,‘_i o T u),, Habs Hgp = — —5— Hab (2.6)

At sonic conditions by eliminating 6p, by means of (2.4) we find in the

same manner the relatlonships
AYpity up?
M = — 1 M Pgp = — 5~ Kb (2.7)

For supersonic flow we obtaln the followlng by equating to zero coeffici-
ents in front of bu,, 6p, and p,

Bib = fgp = Pgp = O (2.8)

Thus, Lagrange's mvltipliers c'.n always be selected such that 1n the ex-
pression for 67 only variation:c of independently variable quantitles remain.
For thils it is suffilcient to f1 .11l conditions obtained above. For an

iven zy, y(¥), B(z), ¢(z) and p_ the flow 1s determined by Equations (1.1) or
1.9) and by the following conditions; by P,= P_ for subsonic exhaust, by

%Py = Pyl (2.9

for sonic exhaust (the latter is only possible for Po XX Py), by given y,

in supersonic flow and by (1.7) in all cases. Finally, u,, 4, and M, are
determined from {2.3) for conditions: (2.5) and {2.6), or t2 53 and (2.7),
or (2.8) for subsonic, sonic and supersonic conditions, respectively. We
note that conditions of continuity (2.1) may remain unused if (2.3)1s applied
over the entire interval of integration. Here continuity of 4y, 1s automa-
tically satisfied.

3. Corresonding to selection of Lagrange's multipliers
*p
SN =8I = \ (W,oy + W.B + Wydp) dz + (U_ — U,)q bz4 +

0

+ Vadas + [ (27 P+ 5F) + mopul, Sy + (s + o 527 ), pe0 —

—d _uaz)"f—“: (1 — gf—} ua2) (%2 + p,s)aﬁua (3.1)
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The component with &p_ exists in (3.1) only in subsonic flow, and the
component with &y, only in supersonic flow.

Variations entering into (3.1) are independent. This permits to obtain
conditions of thc extremum with respect to all controlling parameters and
also with respect to each one of them individually. In addition, examining
the variation of some quantity at an arbitrary point (for example y ), the
remaining variations may be consldered to be absent.

First of all we wlll find the optimum b for subsonic flow. For thls we
equate to zero the coefficlent in front of ép_ . Remembering (2.6) we find
that this leads to condition (2.9), l.e. among subsonic conditions the opti-
mum 1s the behavior of sonic exhaust.

Analogously, in the supersonlc case the extremum is realized when one of
the followlng conditions 1s fulfilled.

—1
Ua = l/%——l—_i ’ ug =1, (M2 + 215)a=0 3.2)

In the first case y, 1s equal to sonic velocity, in the second case 1t 1is
equal to maximum veloclty. It is recalled that due to formulation of the
problem these conditions correspond to the extremum at fixed y,. It may be
shown that the first value 1y, realizes an extremum even when the gas con-
sumption and not y, 1s flxed. The character of the extremum 1s determined
by comparison of the quantity ¥ for all roots of (3.2).

In order to find the optimum length of the channel 1t 1s necessary to
equate to zero the factor in front of &x,. However, if x,= 1 , then the
allowable 6x,< O and to insure a maximum of ¥ 1t 1s sufficient for this
factor not to be negative, Thus,

Vo = Aqe (uB — i;;)b >0 @ <1) (3.3)

where the sign of inequallty can apply only for x,= 1 . From this follows
the natural conclusion: the length of the channel must be chosen such that
in the end sectlon the generator mode is achieved.

In the same manner we find the necessary condition of maximum with respect

[ (25 P+ 2) + papu], >0

Here the inequality can apply only for y,= Y . For supersonic flow this
condition is always satisfied by virtue of (2.8), for subsonic or sonic con-
ditions 1t takes the following form because of (2.6) or (2.7)

Map > 0 (3.4)

For y,< Y thls condition determines the optimum y, .

to y,

Finally, equating to zero the coefficient in front of b&x, , we obtain the
necessary condition for extremum at points of discontinulty

(U.—U)a=0 (3.5)
We emphasize that at points of discontinuity of contour no additional con-
ditions arose.
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Examination of terms outside the integral in (3.1) gave the conditions
for determination of optimal p., u,, x, and x, at arbitrary y(x), B(x)
and o¢(x) . An exception 1s preasented Sy condition (3.%). In fact, varia-
tion y, is not independent, since by virtue of (1.8) 1t necessitates a
change of y for x < x, . For small changes of y, the contribution due
to this 1s of a higher degree of smallness since y can be varied only over
a section of x of the same order as This very circumstance permits
to consider &y, as independent in obtaining (3.4). Therefore the case of
arbltrary shape of channel the condition (3.4%) serves only as a check and
not for finding of optimum g,

For the construction of experimental y(x), B(x) and o(x) , Just as in
obtaining (3.3) and (3.%), we will remember that the desired curves may con-
sist of reglons of two-sided and outer extremums. Since in the first men-
tioned regions the varlations are arbitrary, W,, W, or W, must go to zero

here.

As a result we obtain Equations

lsmuz—'&_——uﬁ{ulpu x —1) (uB—gﬁ)(%i1uB—Zi)+
+ (B + 19 +9) [xp (uB— )+ pur 2]l — 0 (3.6)
Wo=Afu @B+ pe + ) + py (uB — )] =0 (3.7)

Wo= A[( + ) (uB— ) — B+ pp+o)y|=0 (38

for determination of the shape of channel, intensities of magnetic fileld and
potential, respectively. Iu obtaining the expression for W, the derivatives
u', p's w ', up’ and ,’ are eliminated by means of (1.9) and (2.3). Ab-
sencé of derivative y’ in W, indicates double degeneracy of the problem., Let us
mention that the same circumstance follows from the result of [2]. Each of
these equations 1s applied only where y, 3 and ¢ , which are to be deter-
mined from these equations, satisfy conditions (1.4) to (1.6) and (1.8). In
the opposite case an outer extremum 1s present. Here the corresonding func-
tion is equal to the limiting value resulting from (1.4%), (1.5), (1.6) or
(1.8). Since in these reglons permissible variations do not change sign,
necessary conditions of maximum ~N are formulated here as inequalities

Wl >0 for y=Y (39)
W,sign B >0 ftor =41 (3.10)
Wssigng >0 tor ¢=2¢, (3.11)

In order to obtain an analogous condition in the region ey wlth Equa-
tion y’= k , we vary y’ only for Ty < I < T < ZTn < Iy, and let
max |8y’| and |x,~ x;| be quantities of the same order. With accuracy to

terms of higher order X xf
v = o1 =({ sy'dz) | Widz
xy x

For permissible &y’ we obtain by virtue of (1.8)
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*n

S 6y’dx<0 for y'=k

I

Therefore the necessary condition of maximum ¥ has the form

xf
j Widz >0 (V' =k g, <z <z

For the same reason
X

’

{ Wdz >0  @w=—k z,<z<2)

Xe

To satisfy these inequalities it is sufficient (but not necessary) to
satisfy (3.9).

Sometimes the class of permissible functions can be narrowed. So, 1f the
walls are ideal conductors, then ¢(x) = const . Here &¢ also does not
depend on x and the experimental ¢ satisfles the condition

*b
( S Wadz) signg >0
0
where the inequality 1s only applicable at |o| = o, .

An analysils of conditions obtained shows the following. For optimum 5
and ¢ the only possible discontinuity 1s their simultaneous change of signs
for unchanged absolute value. This solution, however can be rejected because
1t ylelds the same value of ¥ as the continuous solution. If ¢ 1is given
and continuous then optimum 2 1s also zontlnuous,

In a number of cases ¢ may be given as discontinuous. Moreover, |B =1
on both sides of the discontiruity or B(x) is discontinuous because of (3.7).
If o(x) is sought 1n the class of sectionally continous functions with' pre-
scribed points of discontinuity (sectional electrodes), then ¢ 1s deter-
mined in all regions from conditions (3.12) by integration only over regions
of constant ¢ ., Optimum dimensions of these reglons are found from (3.5).
Jere at points of discontinuity of ¢ the optimum B(x) 1s also either dis-
continuous or |p| = 1 on both sides of the discontinuity. This also applies
to the case where B and ¢ 1nterchange places.

In the general case the extremal contour may consist of reglons of four
types: y' =Y,y = k,y¥ = —k and a region of two-sided extremum (3.6).
Extremal magnetic field may contain regions of three types: p =1, B =—1
and a region of two-sided extremum (3.7). The same thing can be said asbout
the extremum distribution of the potentilal,

As follows from (3.7) and (2.8), in supersonic flow the end section of
the curve B5(x) 1s always a region of an outer extremum. Functions y, B
and ¢ are continuous at all points of contact.

In sections of the channel which are simultaneously regions of two-sided
extremum with respect to y, and with respect to B , according to (3.6) and
(3.7) p = pw®, 1.e. M = » . Consequently such a case is impossible for
supersonic flow. In addition to this it 1is not necessary to determine yu,
in supersonic flow because 1n this case 1t has no influence on the solutlon.

It is clear that the conditions found also give solutions of more specific
problems, for example, the problem of determination of external Bix) for
iven shape of channel and given potential. Here from conditions (3.6) to
%3.12) only (3.7) and (3.10) are utilized.

In each actual case all possible flow conditions should be examined (sub~
sonic, sonic, supersonic) and in the presence of several maxima the selectlon
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should be made according to quantity % . We note that the case of mixed
flow which 1s not examined in this paper undoubtedly is of interest and
requires additional investigation.

4, As the first example let us cxamine the problem of determining the
following optimum values: R(x) , © = const , P, and x, for varilous values
of parameter A in the case of a channel of constant cross section. For
x < O the shape of the channel 1s such that M <;]_ There are no limita-
tions on ¢ e

Thus, it 1is necessary to solve the boundary value problem for five dif-
ferentlal equations (1.9) and (2.3) of the first order where 0=y =1 and
y' =0, for six boundary conditions: (1.7) and (2.5) for x = 0 and (2.7)
‘and (2.9) for x = x, . Additional freedom 1s given by selection of p, or
~ 1in the last equation of system (1.9). The quantity x, 1s determined
from (3.3), while pg(x) in accordance with (3.7), is determined by equation

o —( + ) u
2upy

if lolw —( 1 pg) ul] < [ 2up, |, and 1t is equal to +1 or to — 1 1in the
opposite case. The optimum ¢ 1s determined by condition (3.12)

B=g

*p
S W,dz =0
0
or by an equivalent differential equation y’= W, for boundary conditions
¥a= Xp= O . One of these conditlons 1is satisfied at the expense of the
cholice in o .
y
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Equations were integrated by the Kutta-Runge method from x = x, to x =~O.
Lacking initial conditions for x = x, Wwere selected by means of approxima-
tions with respect to four parameters using Newtons method. Since on approach-
ing x, all derivatlves tend to infinity, x was taken as independent vari-
able only for u'< 1 . For u’ > { ,u was taken as independent varilable.

Calculations were carried out on an electronic computer for x = 5/3 and
0.01 < A 100, Results are presented in Filgs. 2 to 7 by solid lines, 1In
Fig.2 optimum B(x) i1s shown for a number of values A (for all examined A
the optimum x, = 1). Curves R(x) for A > 0.1382 consist of a reglon with
B =1 and a reglon with two-sided extremum, For smaller A the second
reglon 1s absent. With increasing A the extent of the region with two-
sided extremum grows, however, for any finite A , A = 1 near the left end.
In Fig.3 the curve for optimum ¢ 1s given, and in Fig.4 the curve py 1In
its dependence on 4 1s given., The optimum (sonic) condition is achieved
for Po S Pp- With increase in A the actuated pressure drop ~ p,~! increases
and p decreases, though slower than A—"%_ Therefore the dimensional poten-
tial increases, -In Fig.5 the change in Mach number along the channel 1is
shown for a number of values A (circles are points of connection between
regions of outer and two-seded extremum).

Fig.6 gilves available power as a function of A . In Figs.3 to 7 corre-
sponding curves for a generator with B(z) =1 are given by dashed lines,
the remaining parameters o , p, and x, were optimal. For A <0.1382 (cir-
cles in Figs. 3, 4 and 6) characteristics of both generators coincide. For
large A optimum profiling of RA(x)
leads to an increase in avallable power
m (vy 3.8, 7.1, 22, 31 and 37 per cent

for A = 1.0, 1.5, 5.0, 10 and 20,

respectivelyi and decrease In o . In
b connection with this we note that in
the presence of a limitation with

| 002 /| ;

/’ | ’ /7
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|
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respect. to ¢ the galn would have been even more significant. In Figs. 3
and 4 optimum ¢ and p, for A = O are shown by horlzontal line sections
on the left. For determination of @Pa., Neuringer's result [1 and 4],

® = u,/2 was used, while u, and p, were determined from equations of gas
dynemics. In accordance with (1.2), NA=°=0 . A check of necessary con-
ditions of extremum with respect to y, and y(x) showed that in cases which
were investigated, the channel of the examined formula is not optimal,
although y,= 1 1s optimal.

It 1s interesting that for B = 1 the region of change of all parameters
wilth increasing A becomes constricted towards x = 1 . This is evident in
the Mach number distribution and also in the distribution of available power
(in Fig.7, 7. 1s the ratio of power which is available in a region of the
channel to the left of a given x, to the total power). Such a result 1is
natural because in this case in dérivatives in (1.9) a small parameter A1
appears. At optimum B(x) the power output is achleved almost uniformly,
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which confirms qualitative considerations of paper [5].

As a second example the problem of determina-~
105 tion of optimum y(x) , B(x), v const and »x,
. ¥ for ©/y °= 10 and ¥,= 1 was solved for » num~
ber of v%lues A and Y 1n the supersonlc flow
condition. There 1s no limitation with respect

103 to o , and x = 5/3 .
// In the determination of optimum shape it 1s
necessary to know the constant » or the maximum
1// permissible angle‘ﬁ”, between the wall end the
101 LA axls of the channel for which one-dimensional

theory 1s still applicable., Since clarification
of this peoblem falls beyond the limits ot this
paper, @¢,= 20°, was assumed, thils gilves

o7 k= (I°y Yuand,, = 3.64
Fig. 8 and a maximum Y = 4.64,

Analysis showed that in the range of A and
Y under examination, the optimum x,= 1 , the optimrum magnetic fleld is
uniform: p{x) = 1 , and the optimum contour of the channel consists of two
straight linear sections y’= % and y =Y . For J = 4,64 the power of
the optimum generator as a function of 4 1s given in Fig.6 (dash-dot), and
the optimum o 1s given in Fig.8. The maximum 4 for which the flow 1s

099 A 4
7

. M 0098 (W 5 Wi >
0006 / // 08 / z
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'8 / 2004 /// // af / /
17 , i ,
0, babz; E] 5 Y 3 5
Flg. 9 Fig. 10

sti1ll supersonilc everywhere in thils case is equal to 0.103 (black circle in
Fig.6). The change in character of flow wilth increase 1in 4 1is evident in
Fig.9. It 1s interesting that an Increase in A has almost no influence on
the initial region of flow. As follows from Fig.7, where the dash-dot line
shows distribution of available power for A = 0,01 and 0.1 for Y = 4,64,
this region of the generator operates as an accelerator. In Fig.10 the
dependence of power on Y 1s given for the optimum generator by a solid
curve. The dashed curve 1s for a generator for which x,, B(x) and o are
optimum while the walls are formed by straight linear sectlons which connect
the points x,= O, y,=+1 and x,= 1, y,=+ ¥; bothcases A = 0.02. 1In the
same figure the dependence ¢ = p(¥) 1s presented. It 1s evident that opti-
mum selection of shape leads to a substantial increase in ¥ . Calculation
showed that #,= 1 used in this example 1s not optimum.

5, The analysis made can be applied to a more general case. Let
o = o(ps p» ). 1In addition it is not always appropriate to carry out opti-
mization according to quantity of available power [6]. In connection with
this let us examine the functilonals
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xp
K5=S(D5($,y,u, P,P,Bv(P)dz G=1..,r—1)

1}
xp xp -1

Kj= { ®;(z,y, u p, b, B,@)dz[{ Fy(2,y, u, 0, p, B, @) dz] (=r...m)
° 0

where &, and pF, and also ¢ are known functlions of their arguments.

The variational problem 1s of interest in which the maximum of the ¢th
functional 1s sought for isoperimetric conditions which result when the
remaining ~ are given., Such 1is for instance the problem of construction
of a magnetohydrodynamic generator of a specifiled power with minimum Joule
disslpation, We construct the function

O =®(z,y,u,p,p B9 4= 20 AD;(z,y,u, p, p, B,§) —

=1
n
_Z }"JKJFJ (I, y, u, p, p, B, ‘P)
j=r
where A, are constant Lagrange's multlpliers, here i ;=1 , 1f ¢ < r and

X ~1

7vt=(Sb Ftd-'c) »Af ixr
0

An analysis analogous to the one carrled out above again leads to previ-
ously obtalned relatlionships if expressions for ¥,, W,, U and V¥V in them
are replaced by the followlng:

M= % {Eﬂ‘ﬁy' + A (WB + p.9) [uoB—— pop,(uB_:;) _

ut—u%p | y \
—0p (P+ u:i puz)(uB — g)]—l— u®, — p®, — (p + % ;1 pu") (pp}
M=% (’;p_ = pu?) {m;uay "+ AWB + pa9) [MB — (oppu® + poy) X
X (uB — 5)]—{— u®d, — O pu? —pCDp}
M, = 2y (:u:—ixp) {PIT“ (n 2—% iP + puz) ¥y —2p,Ac (uB — :;) X
x (u - 1 “B—E) + Au (B + 1) [udB — puzo,,(uB—-g) -
o ) )]+ 0 52
Wy= oy i 00— 1) Bopu (uB —2) (2 uB — ) +

+ A (B + 1a9) [(oxp — opeppu® — opptu?) (uB —2) +
+pu* %] - up (Dute + Dppu — Dyg) — put (pD, — y®y)}
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W, = A (u,B +p.9) [uc' -+ op (uB — :l)] + p,As (uB — g—) + @p

A
W= p,Ac (uB - 3) — 1B+ p.9) __yﬁ + @,

U= As(u,B + n.9) (g-uB)Jr ®, V=0

Here @, @,, ©, @, ®p, ®,, 6, 6, and op designate partial deri-
vatives. The solutlion contalns as before regions of two-sided and outer
extremums. The conclusion about extremal p_ and u, 1s also retained.
Additional freedom I1n the selection of (n — 1) Lagrange's multipliers serves
to satisfy an equal number of l1soperimetric conditions.
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